Section I

10 marks

NESA	Number:
------	---------

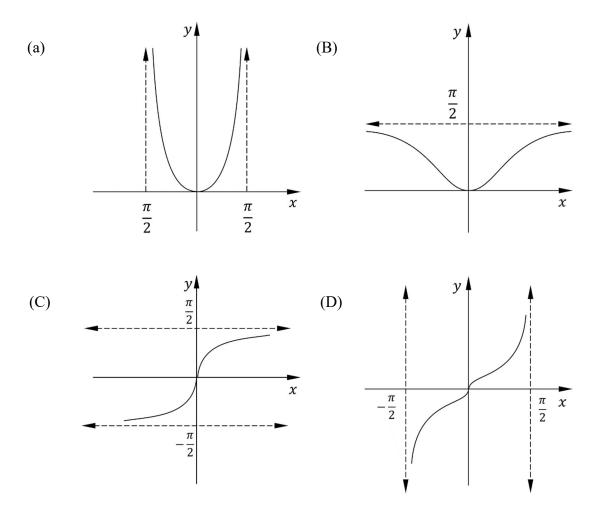
Attempt Questions 1 – 10

Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1 - 10.

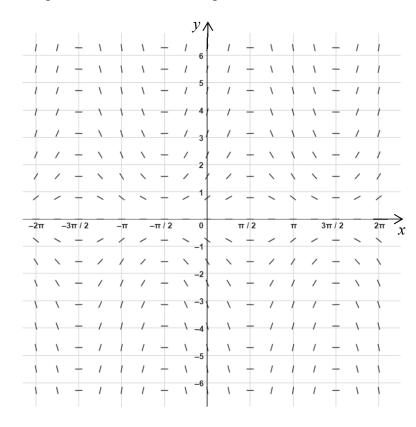
- 1. What is the domain and range of $y = 2\sin^{-1}\frac{2x}{5}$?
 - (A) Domain: $-\frac{5}{2} \le x \le \frac{5}{2}$, Range: $-\frac{\pi}{4} \le y \le \frac{\pi}{4}$.
 - (B) Domain: $-\frac{2}{5} \le x \le \frac{2}{5}$, Range: $-\pi \le y \le \pi$.
 - (C) Domain: $-\frac{5}{2} \le x \le \frac{5}{2}$, Range: $-\pi \le y \le \pi$.
 - (D) Domain: $-\frac{2}{5} \le x \le \frac{2}{5}$, Range: $-\frac{\pi}{4} \le y \le \frac{\pi}{4}$
- 2. Given $\overrightarrow{OA} = -2i + 3j$ and $\overrightarrow{AB} = 4i j$, which is the correct value for \overrightarrow{OB} ?
 - (A) $\begin{pmatrix} 2 \\ -4 \end{pmatrix}$ (B) $\begin{pmatrix} -6 \\ 2 \end{pmatrix}$ (C) $\begin{pmatrix} 6 \\ -4 \end{pmatrix}$ (D) $\begin{pmatrix} 2 \\ 2 \end{pmatrix}$
- 3. What is the remainder when $P(x) = x^3 2x + 3$ is divided by (2x-1)
 - (A) $3\frac{7}{8}$ (B) $2\frac{1}{8}$
 - (C) 2 (D) 4

4. Which of the following graphs best shows $y = \tan^{-1}(x^2)$?



- 5. Consider the differential equation $\frac{dy}{dx} = 4xy$. Which of the following is the family of solutions to the equation.
 - (A) $y = Ae^{2x^2}$ (B) $y = \ln(2x^2) + c$
 - (C) $y = 2x^2 \ln |y| + c$ (D) $y = 4x \ln |y| + c$
- 6. The cartesian equation of the curve with the parametric equations $x = 2e^{t}$ and $y = \cos(1 + e^{3t})$ for $0 \le t \le \frac{3}{4}$ is given by: (A) $y = \cos\left(1 + \frac{e^{3}}{8}x\right)$ (B) $y = \cos\left(1 + \frac{x}{2}\right)$
 - (C) $y = \cos\left(1 + \frac{x}{2} + e^3\right)$ (D) $y = \cos\left(1 + \frac{x^3}{8}\right)$

7. Which differential equation is shown in the slopefield below?



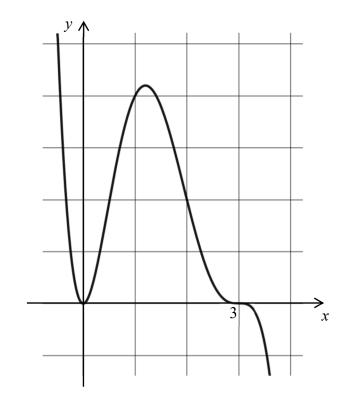
- (A) $y' = y \cos x$ (B) $y' = y \sin x$
- (C) $y' = x \cos y$ (D) $y' = x \sin y$

8. What is the value of k such that
$$\int_{0}^{k} \frac{1}{\sqrt{4-9x^{2}}} dx = \frac{\pi}{18}$$

(A) -3 (B) $\frac{1}{3}$

(C)
$$-\frac{1}{3}$$
 (D) 3

9. Which of the following could be the polynomial y = P(x).



(A)
$$y = x^{3}(x-3)^{2}$$

(B) $y = x^{2}(x-3)^{3}$
(C) $y = -x^{3}(x-3)^{2}$
(D) $y = -x^{2}(x-3)^{3}$

10. The integral $\int_{0}^{\frac{\pi}{8}} \cos 6x \cos 2x \, dx$ simplified is equal to:

(A)
$$\frac{3}{16}$$
 (B) $\frac{1}{8}$

(C) 0 (D)
$$\frac{1}{16}$$

Section II

60 marks Attempt Questions 1 – 4 Allow about 1 hour and 45 minutes for this section Answer each question in a SEPARATE writing booklet. Extra writing booklets are available. In questions 11 – 14, your responses should include relevant mathematical reasoning and/or

In questions 11 - 14, your responses should include relevant mathematical reasoning and/or calculations.

Question 1 (16 marks) - Start your work in Question 1 Answer Booklet

- (a) If $\underline{a} = 3\underline{i} 2\underline{j}$ and $\underline{b} = -\underline{i} + 4\underline{j}$, calculate:
 - (i) b a(ii) $a \cdot b$ 1

(b) Differentiate
$$y = \frac{1}{3} \tan^{-1} 3x$$
.

(c) Find
$$\int \frac{1}{x^2 + 2x + 5} dx$$
 2

(d) Evaluate
$$\int_{0}^{\frac{1}{2}} \sqrt{\frac{x}{1-x}} dx$$
 using the substitution $x = \sin^2 \theta$. 3

- (e) (i) If the polynomials $P(x) = 2x^3 + mx^2 + 2x 3$ and $Q(x) = x^2 + nx 3$ have the same remainder when divided by x + 2, write an expression for *m* in terms of *n*. 2
 - (ii) Given that (x-3) is a factor of Q(x), find the value of *m* and *n*. 2
- (f) Find the exact value of $\cos \frac{\pi}{8}$ giving your answer in simplest form. 3

End of Question 1.

Question 2 (16 marks) - Start your work in Question 2 Answer Booklet

- (a) Prove, by Mathematical Induction, that $5^{2n+1} + 2^{2n+1}$ is divisible by 7 for all integers $n \ge 1$.
- (b) In a 16 member soccer squad 12 are right-handed while 4 are left-handed. If 11 members are to be selected as the starting line up (players participating at the start of a game), in how many ways will there be at least three left-handed players in the starting line up?2
- (c) The functions f and g are defined by $f(x) = \sqrt{4-x^2}$ and g(x) = x-1.
 - (i) Show that the domain of f(g(x)) is $-1 \le x \le 3$. 1
 - (ii) Hence state the range of the function f(g(x)). 1
 - (iii) What is the largest domain which includes the point (3, 0)over which f(g(x)) has an inverse function? 1
 - (iv) Hence find h(x), the inverse function of the composite function f(g(x)), stating its domain and range.
 - (v) Sketch the graph of y = h(x). 2

(d) Show that $\tan^{-1} 1 + \tan^{-1} 2 + \tan^{-1} 3 = \pi$

3

3

Question 3 (15 marks) - Start your work in Question 3 Answer Booklet

- (a) For vectors u = 3i + bj and v = -i 3j
 - (i) Write an expression for the projection of vector *u* onto vector *v*.
 - (ii) Given that the length of this projection is 3 units, find the value of b.
- (b) Find in the form y = f(x) the solution of the differential equation $y' = \frac{2e^{-\frac{1}{2}y}}{\cos^2 x}$, given that $y = \ln 3$ when $x = \frac{\pi}{3}$.

(c) Newton's law of cooling states that when an object at temperature $T^{\circ}C$ is placed in an environment at temperature $A^{\circ}C$, the rate of temperature loss is given by the equation:

$$\frac{dT}{dt} = -k(T - A)$$
 where t is the time in minutes and k is a positive constant.

- (i) Use differential equations to show that $T = A + Be^{-kt}$ is a solution to the above equation.
- (ii) A cup of tea with initial temperature of 90°C is placed in a room in which the surrounding temperature is maintained at 25°C. After 25 minutes, the temperature of the cup of tea is 45°C. How long will it take for the it's temperature to reduce to 30°C? Answer correct to the nearest minute.
- (d) (i) Ten friends are going to be divided into groups of 5, 3 and 2 members as part of a competition. In how many ways can the groups be formed?

(ii) If n friends are divided into groups of made up of c, k, and r members

where c + r + k = n and c > k > r. Explain why

$$\binom{n}{n-k-r}\binom{k+r}{r} = \binom{n}{r}\binom{n-r}{k}.$$
2

End of Question 3.

7

2

2

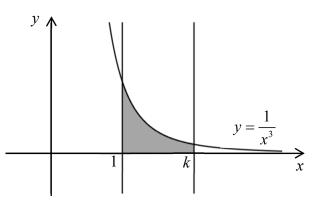
3

1

3

Question 4 (13 marks) - Start your work in Question 4 Answer Booklet

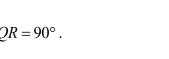
- (a) A spherical ball is expanding so that its volume is increasing at the constant rate of 10 mm³ per seconds. What is the rate of increase of the radius when the surface area is 400 mm²?
- (b) The graph of $y = \frac{1}{x^3} \{x > 0\}$ is shown below. The shaded area is rotated about the y-axis.



- (i) Show that the generated volume in terms of k is $V = \left(2\pi \frac{2\pi}{k}\right)$ units³. 4
- (ii) Explain what happens to the volume as $k \to \infty$.
- (iii) If the volume of the solid form is $\frac{3\pi}{2}$ units³, find the value of k. 1
- (c) Consider the square *OACB* where point *O* is the origin. Let the position vector of points *A* and *B* be defined as \underline{a} and \underline{b} respectively i.e. $\overrightarrow{OA} = \underline{a}$ and $\overrightarrow{OB} = \underline{b}$.

Let points *P*, *Q*, *R* and *S* be defined so that $\overrightarrow{OP} = ka$, $\overrightarrow{AQ} = kb$, $\overrightarrow{RC} = ka$ and $\overrightarrow{SB} = kb$ where $0 \le k \le 1$. This means points *P*, *Q*, *R* and *S* are positioned along their respective sides in equal proportions.

Use vector methods to prove that the size of $\angle PQR = 90^{\circ}$.



A

1

C

End of Examination.

Section I - Solutions

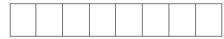
10 marks

Allow about 15 minutes for this section

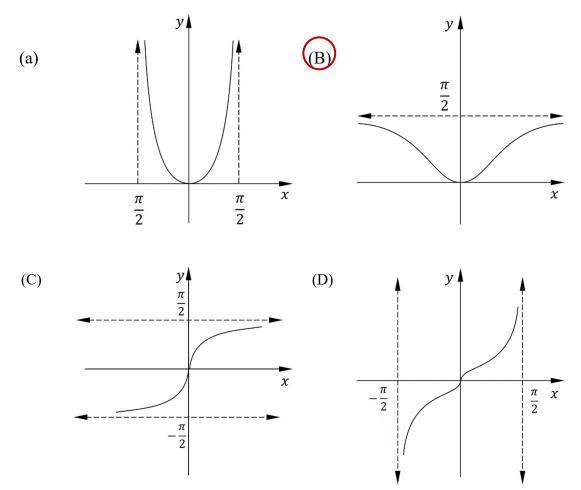
Use the multiple-choice answer sheet for Questions 1 - 10.

- 1. What is the domain and range of $y = 2\sin^{-1}\frac{2x}{5}$?
 - Domain: $-\frac{5}{2} \le x \le \frac{5}{2}$, Range: $-\frac{\pi}{4} \le y \le \frac{\pi}{4}$. (A)
 - Domain: $-\frac{2}{5} \le x \le \frac{2}{5}$, Range: $-\pi \le y \le \pi$. (B)
 - (C) Domain: $-\frac{5}{2} \le x \le \frac{5}{2}$, Range: $-\pi \le y \le \pi$.
 - Domain: $-\frac{2}{5} \le x \le \frac{2}{5}$, Range: $-\frac{\pi}{4} \le y \le \frac{\pi}{4}$ (D)
- 2. Given $\overrightarrow{OA} = -2\underline{i} + 3\underline{j}$ and $\overrightarrow{AB} = 4\underline{i} \underline{j}$, which is the correct value for \overrightarrow{OB} ?
 - (A) $\begin{pmatrix} 2 \\ -4 \end{pmatrix}$ (B) $\begin{pmatrix} -6\\2 \end{pmatrix}$ (C) $\begin{pmatrix} 6 \\ -4 \end{pmatrix}$ (D)
- 3. What is the remainder when $P(x) = x^3 2x + 3$ is divided by (2x-1)
 - (A) $3\frac{7}{8}$ $2\frac{1}{8}$ (B)
 - (C) 2 (D) 4

		NE	SA N	Jum	ber:	



4. Which of the following graphs best shows $y = (x^2)$?

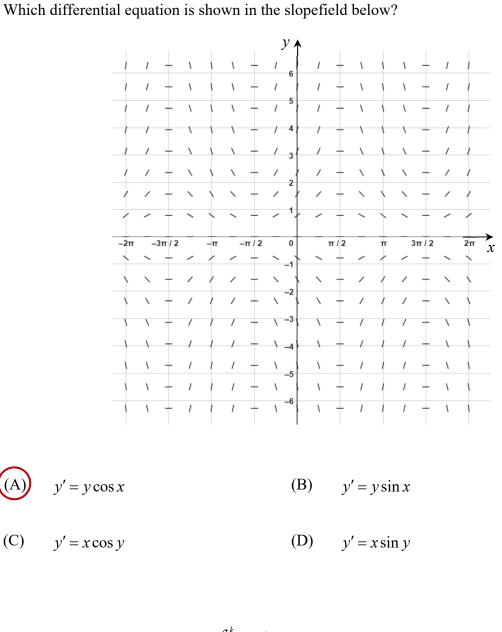


5. Consider the differential equation $\frac{dy}{dx} = 4xy$.

Which of the following is the family of solutions to the equation.

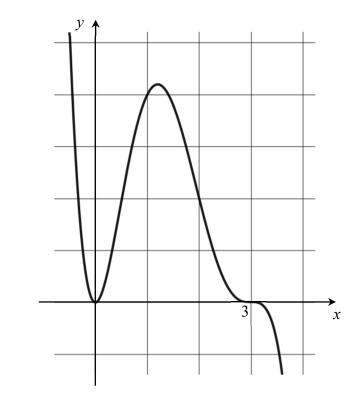
- (A) $y = Ae^{2x^2}$ (B) $y = \ln(2x^2) + c$ (C) $y = 2x^2 \ln|y| + c$ (D) $y = 4x \ln|y| + c$
- 6. The cartesian equation of the curve with the parametric equations $x = 2e^t$ and $y = \cos(1+e^{3t})$ for $0 \le t \le \frac{3}{4}$ is given by: (A) $y = \cos\left(1 + \frac{e^3}{8}x\right)$ (B) $y = \cos\left(1 + \frac{x}{2}\right)$
 - (C) $y = \cos\left(1 + \frac{x}{2} + e^3\right)$ (D) $y = \cos\left(1 + \frac{x^3}{8}\right)$

7. Which differential equation is shown in the slopefield below?



- 8. What is the value of k such that $\int_{0}^{k} \frac{1}{\sqrt{4-9x^2}} dx = \frac{\pi}{18}$ $(B) \quad \frac{1}{3}$ (A) -3
 - (C) $-\frac{1}{3}$ 3 (D)

9. Which of the following could be the polynomial y = P(x).



(A)
$$y = x^{3}(x-3)^{2}$$
 (B) $y = x^{2}(x-3)^{3}$
(C) $y = -x^{3}(x-3)^{2}$ (D) $y = -x^{2}(x-3)^{3}$

10. The integral $\int_{0}^{\frac{\pi}{8}} \cos 6x \cos 2x \, dx$ simplified is equal to:

(A)
$$\frac{3}{16}$$
 (B) $\frac{1}{8}$

(C) 0 (D)
$$\frac{1}{16}$$

Section II

Question 1 (16marks) - Start your work in Question 1 Answer Booklet

(a) If a = 3i - 2j and b = -i + 4j, calculate:

(i)
$$b-a$$

1

. F-17 F37	1 - for answer
2-2 = 4 -2	Marker's Comments:
-ai bà	Answered well.
= -+0 + 02	

(ii) $a \cdot b$

1	L	

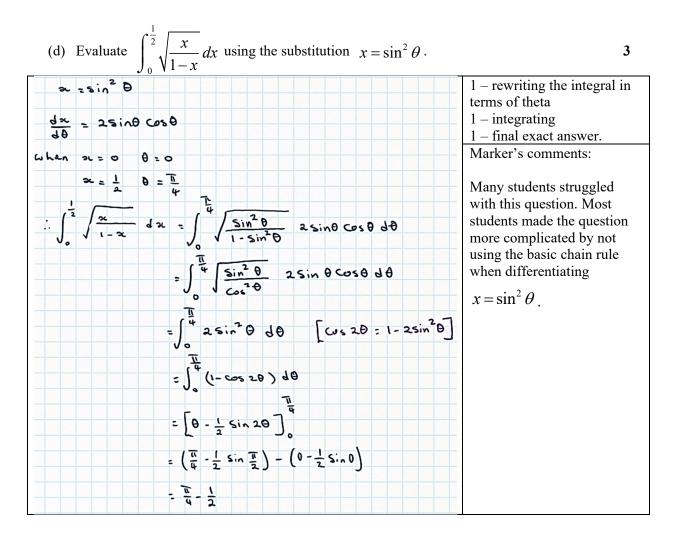
x. = (3)(-1) + (-2)(4)	1 - for answer
	Marker's Comments:
= -3-8	Answered well.
= - 11	

(b) Differentiate
$$y = \frac{1}{3} \tan^{-1} 3x$$
.

$y = \frac{1}{3} \tan^{-1} 3\pi$	1 – for differentiation 1 – for simplified answer
$y' = \frac{1}{3} \frac{3}{1+9\pi^2}$	Marker's Comments: Answered well.
$=\frac{1}{1+92^2}$	

(c) Find
$$\int \frac{1}{x^2 + 2x + 5} dx$$

	1 – for rearrangement
dx - dx	1 - answer
$n^2 + 2n + 5$ $(n + 1)^2 + 7^2$	Marker's Comments:
- (x+1) 12	Most students who new the
	strategy got full marks. Those
$=\frac{1}{2}$ tan $\frac{2}{2}$ + C	who did not used either logs or
	attempted to incorrectly split the
	fraction, both leading to incorrect
	answers.



(e) (i) If the polynomials $P(x) = 2x^3 + mx^2 + 2x - 3$ and $Q(x) = x^2 + nx - 3$ have the same remainder when divided by x + 2, write an expression for *m* in terms of *n*.

P(-2) = -16 + 4m - 4 - 3	1 - for equating the remainders $1 - $ for the expression
= 4m - 23 Q(-2) = 4 - 2n - 3 = 1 - 2n Now P(-2) = Q(-2) => 4m - 23 = 1 - 2n	Marker's Comments: Answered well. Students who used the remainder theorem were mostly successful. Those who used long division to find the remainders, made mistakes, leading to incorrect answers.
4m = 24 - 2n $m = 6 - \frac{n}{2}$	

(ii) Given that (x-3) is a factor of Q(x), find the value of m and n.

Q(3) = 9 + 3n - 3	1 - for value of n $1 - value of m$
3n + 6 = 0 n = -2	Marker's Comments: Answered well.
m = 8	

(f) Find the exact value of $\cos \frac{\pi}{8}$ giving your answer in simplest form.

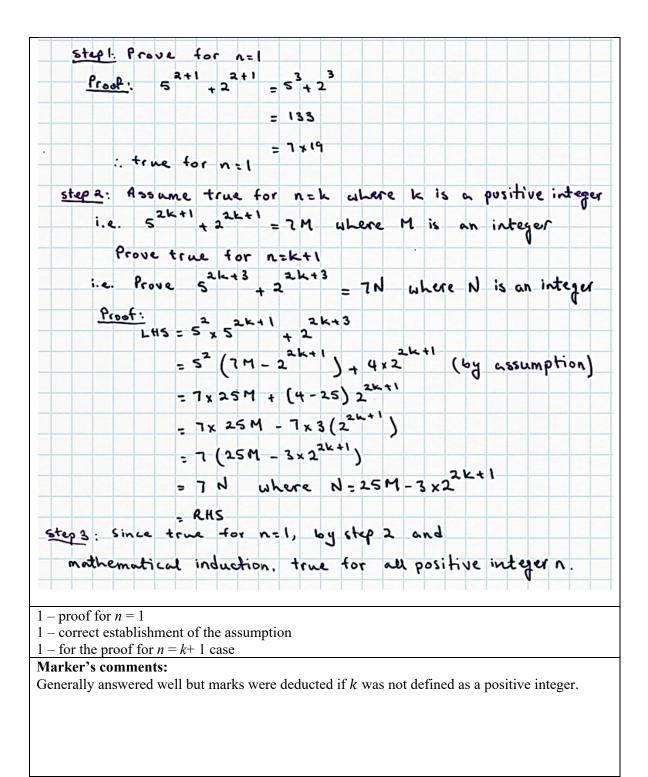
$\begin{array}{rcl} \cos 2\theta & = & 2\cos^2\theta & - & 1 \\ \Rightarrow & \cos^2\theta & = & \frac{1}{2}\left[\cos 2\theta + 1\right] \\ \therefore & \cos^2\frac{\pi}{8} & = & \frac{1}{2}\left(\cos\frac{\pi}{8} + 1\right) \\ & = & \frac{1}{2}\left(\frac{1}{\sqrt{2}} + 1\right) \\ & = & \frac{1}{2}\left(\frac{\sqrt{2}}{2} + 1\right) \\ & = & \frac{\sqrt{2}+2}{4} \\ \vdots & \cos\frac{\pi}{8} & = & \frac{(\sqrt{2}+2)}{2}; & (\cos\frac{\pi}{8} > 0) \\ & (\text{att excuer: } \cos\frac{\pi}{8} = & (\frac{1}{\sqrt{2}} + 1)^{\sqrt{2}} \end{array}$	 1 – for establishing the initial relationship 1 – for correct expression 1 – simplified answer with reason for ignoring the negative case. Marker's comments: Generally answered well. Most students made a start achieving one mark. But a number of students ignored the negative case when finding the square root, loosing the chance toe explain why the positive case is the correct answer.
--	--

End of Question 1.

Question 2 (16 marks) - Start your work in Question 2 Answer Booklet

(a) Prove, by Mathematical Induction, that $5^{2n+1} + 2^{2n+1}$ is divisible by 7 for all

integers $n \ge 1$.



(b) In a 16 member soccer squad 12 are right-handed while 4 are left-handed. If 11 members are to be selected as the starting line up (players participating at the start of a game), in how many ways will there be at least three left-handed players in the starting line up?

$\binom{4}{3}\binom{12}{8} + \binom{4}{4}\binom{12}{7} = 1980 + 792$	1 – for first case 1 – for final answer
- 272	Marker's Comments: Generally answered well

- (c) The functions f and g are defined by $f(x) = \sqrt{4-x^2}$ and g(x) = x-1.
 - (i) Show that the domain of f(g(x)) is $-1 \le x \le 3$.

4	a	

2

$f(3(x)) = \sqrt{4 - (x - i)^{2}}$ $4 - (x - i)^{2} = 30$ $(x - i)^{2} \leq 4$ $-2 \leq x - i \leq 2$ $D: \{-1 \leq x \leq 3\}$	$1 -$ steps towards finding the domainMarker's comments:Most students answered this questionwell, however, as this is a showquestion, students should include allnecessary steps, including a statingthat $4 - (x - 1)^2 \ge 0$
Alternative approach: Domain of $f(x): -2 \le x \le 2$ Domain of $f(g(x)): -2 \le x - 1 \le 2$ $-1 \le x \le 3$	

(ii) Hence state the range of the function f(g(x)).

 R:
 1 - range

 Marker's comments:

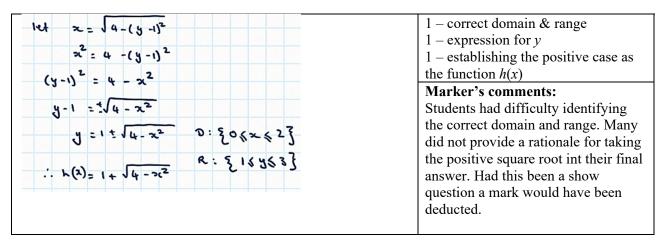
 Generally answered well.

(iii) What is the largest domain which includes the point (3, 0) over which f(g(x)) has an inverse function?

1

D: 91 x x x 3 ?	1 – domain
0.1.5 ~ \$. }	Marker's comments: Generally answered well.

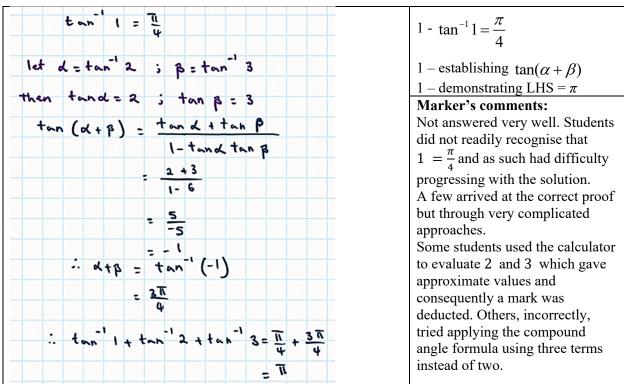
(iv) Hence find h(x), the inverse function of the composite function f(g(x)), stating its domain and range.



(v) Sketch the graph of y = h(x).

L L	1 – correct section of circle 1 – indicating the end points
1 2 2 2	Marker's comments: Not answered very well due to the difficulties students had when answering part (iv)

(d) Show that $\tan^{-1} 1 + \tan^{-1} 2 + \tan^{-1} 3 = \pi$



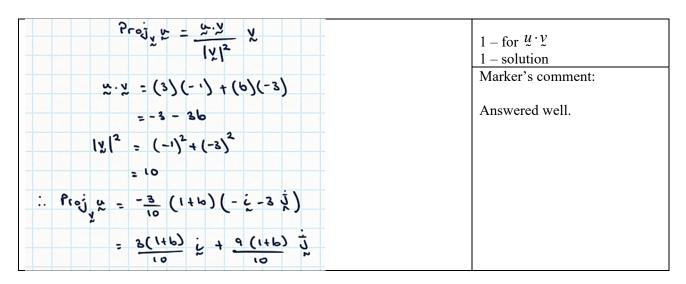
End of Question 2.

3

Question 3 (15 marks) - Start your work in Question 3 Answer Booklet

(a) For vectors $\underline{u} = 3\underline{i} + b\underline{j}$ and $\underline{v} = -\underline{i} - 3\underline{j}$

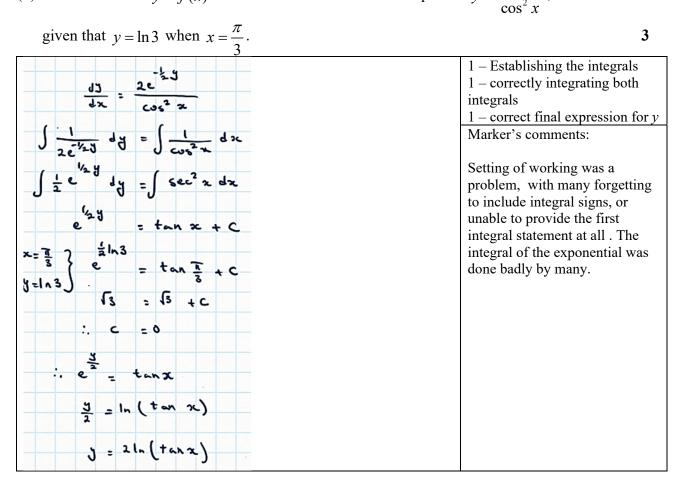
(i) Write an expression for the projection of vector u onto vector v.



(ii) Given that the length of this projection is 3 units, find the value of b.

Proj 15 = + (1+6) J9+81	1 - length of projection in terms of $b1 - $ for answer
	Marker's comments:
$= \frac{+ 3\sqrt{10}}{10} (1+6)$ $\therefore \pm \frac{3\sqrt{10}}{10} (1+6) = 3$	Many students forgot to do only the positive answer.
$\frac{01}{\sqrt{2}} = \frac{1}{\sqrt{2}} = (d+1)$	

(b) Find in the form $y = f(x)$	the solution of the differential equation	$v' - \frac{2}{2}$	е -	2
(0) I ma m the form $y = f(x)$	the solution of the unforential equation	y = -	2	

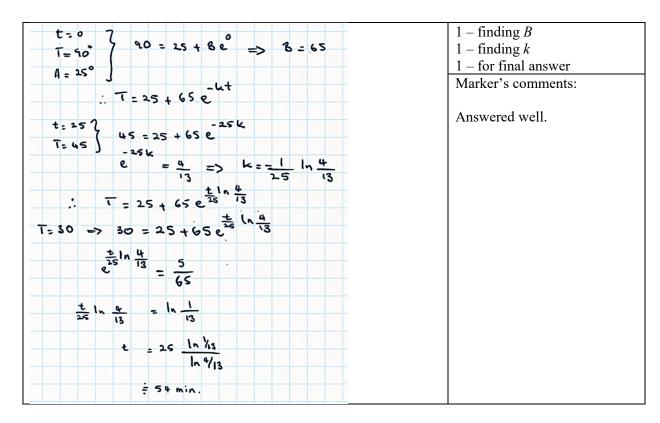


(c) Newton's law of cooling states that when an object at temperature $T^{\circ}C$ is placed in an environment at temperature $A^{\circ}C$, the rate of temperature loss is given by the equation:

 $\frac{dT}{dt} = -k(T - A)$ where *t* is the time in minutes and *k* is a positive constant.

(i) Use differential equations to show that $T = A + Be^{-kt}$ is a solution to the above equation.

(ii) A cup of tea with initial temperature of 90°C is placed in a room in which the surrounding temperature is maintained at 25°C. After 25 minutes, the temperature of the cup of tea is 45°C. How long will it take for the it's temperature to reduce to 30°C? Answer correct to the nearest minute.



(d) (i) Ten friends are going to be divided into groups of 5, 3 and 2 members as part of a competition. In how many ways can the groups be formed?

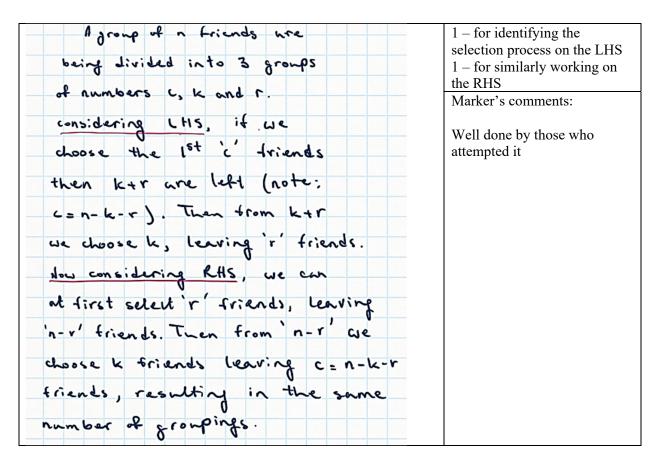
2

$\binom{10}{5}\binom{5}{3} = 2520$	1 – for one of the combinations 1 – for final answer
	Marker's comments:
	Answered well.

(ii) If n friends are divided into groups of made up of c, k, and r members

where c + r + k = n and c > k > r. Explain why

$$\binom{n}{n-k-r}\binom{k+r}{r} = \binom{n}{r}\binom{n-r}{k}.$$
 2

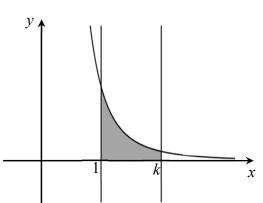


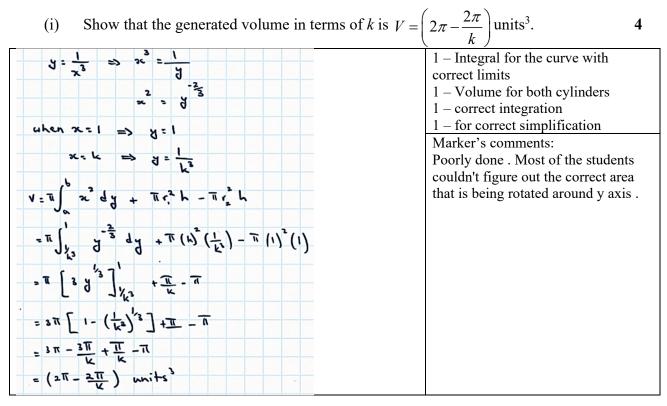
End of Question 3.

$\frac{dV}{dt} = 10 \text{ mm}^{3}/\text{sec} \text{ ; } \frac{dV}{dt} = ? \text{ SA} = 400 \text{ mm}^{2}$ $V = \frac{4}{3} \text{ Tr} r^{3} \text{ SA} = 4 \text{ Tr} r^{2}$ $\frac{dV}{dr} = 4 \text{ Tr} r^{2} \text{ = } 400$ $\frac{dI}{dt} = \frac{dT}{dV} \cdot \frac{dV}{dt}$ $= \frac{1}{4 \text{ Tr} r^{2}} \cdot 10$	1 – for writing the expression for dr/dt 1 – for final answer Marker's comments: Well done
$\frac{dr}{dt} = \frac{10}{400}$ $= \frac{1}{40} \text{ mm/sec}$	

(a) A spherical ball is expanding so that its volume is increasing at the constant rate of 10 mm³ per seconds. What is the rate of increase of the radius when the surface area is 400 mm²?

(b) The graph of $y = \frac{1}{x^3} \{x > 0\}$ is shown below. The shaded area is rotated about the y-axis.





(ii) Explain what happens to the volume as $k \to \infty$.

1

1

As $k \rightarrow a0$, $\frac{2\pi}{k} \rightarrow a \rightarrow V = 2\pi$ units ³	1 – for the answerMarker's comments:well done
2	

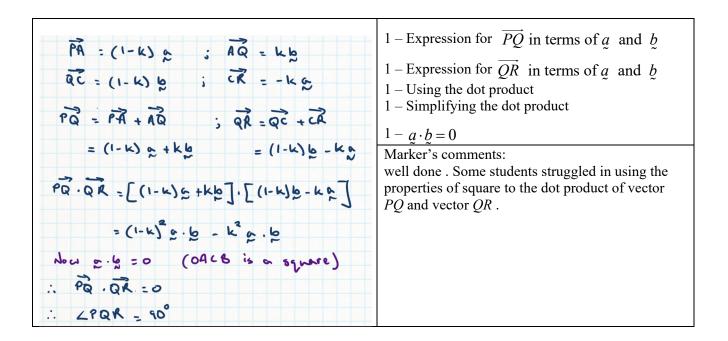
(iii) If the volume of the solid form is $\frac{3\pi}{2}$ units³, find the value of k.

K = 4

(c) Consider the square *OACB* where point *O* is the origin. Let the position vector of points *A* and *B* be defined as \underline{a} and \underline{b} respectively i.e. $\overrightarrow{OA} = \underline{a}$ and $\overrightarrow{OB} = \underline{b}$.

Let points *P*, *Q*, *R* and *S* be defined so that $\overrightarrow{OP} = ka$, $\overrightarrow{AQ} = kb$, $\overrightarrow{RC} = ka$ and $\overrightarrow{SB} = kb$ where $0 \le k \le 1$. This means points *P*, *Q*, *R* and *S* are positioned along their respective sides in equal proportions.

Use vector methods to prove that the size of $\angle PQR = 90^{\circ}$.



End of Examination.

С

R

R

S

A

Р

0